The aim of the current study was to provide the updated knowledge about the influence of supplementation of pig diets with oil plants on the quality and nutritive value of pork meat. The use of feed rich in PUFAs in pig diet including plant oils, such as linseed, rapeseed or sunflower is beneficial for consumers health since these acids improve the dietetic value of meat. They especially increase the proportions of n-3 fatty acids like linolenic acid in pig muscle, but don’t influence the proportion of DHA and EPA. Among oil plants especially the use of linseed in pig diet seems to be a good source of n-3 PUFA, due to its nutritive, economic and technical sustainability as well as ALA content (50% of fatty acids). However, a higher share of PUFAs has a negative influence on technological properties of pork meat and its oxidative stability, as well as sensory characteristics. Thus, the use of antioxidants in the pig diet including vitamins A, C, E and selenium can reduce the formation of initiating lipid radicals and protect the unsaturated fatty acids in pork from an increased lipid oxidation.

KEY WORDS: fatty acid profile / feeding / lipid oxidation / plants oils / pork meat

*Research was realized within the project BIOFOOD – innovative, functional products of animal origin no. POIG.01.01.02-014-090/09 co-financed by the European Union from the European Regional Development Fund within the Innovative Economy Operational Programme 2007-2013.

**Corresponding author: karolina.jasinska93@gmail.com
Introduction

Pork meat is an important component of human diet in many countries in the world. The average consumption of this meat and its products *per capita* in Europe is generally around 40 kg per year, whereas in China 32 kg and in USA over 23 kg [MEATS - OECD-FAO Agricultural Outlook 2016-2025 [Edition 2016]. In order to retain this tendency among the modern health-conscious consumers, strong expectations of the meat highest quality with enhanced nutritional and health-promoting properties including vitamins, minerals, and polyunsaturated fatty acids [Polawska et al. 2011, Horbańczuk et al. 2015] have to be addressed. For example, the fatty acid composition of pork meat is very important for human health, especially in western countries, where pork constitutes a large part of the total meat consumption [Skiba et al. 2012]. However according to Blicharski et al. [2015] there is a great variability in content of fatty acids in particular pork cuts and pork products (Tab. 1).

It should also be noted that such PUFAs as C18:3 n-3 (ALA) cannot be synthetized *de novo*.

<table>
<thead>
<tr>
<th>Table 1. Energy value, fat and fatty acid composition of chosen pork cuts and pork products [Blicharski et al. 2015]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Energy value (kcal)</td>
</tr>
<tr>
<td>Fat (%)</td>
</tr>
<tr>
<td>Fatty acids (mg/100g)</td>
</tr>
<tr>
<td>C14:0 (myristic)</td>
</tr>
<tr>
<td>C16:0 (palmitic)</td>
</tr>
<tr>
<td>C16:1 (palmitoleic)</td>
</tr>
<tr>
<td>C18:0 (stearic)</td>
</tr>
<tr>
<td>C18:1 n-9 (oleic)</td>
</tr>
<tr>
<td>C18:1 n-7 (rumenic)</td>
</tr>
<tr>
<td>C18:2 n-6 (linoleic)</td>
</tr>
<tr>
<td>C18:3 n-3(α-linolenic)</td>
</tr>
<tr>
<td>Σ n-6</td>
</tr>
<tr>
<td>Σ n-3</td>
</tr>
<tr>
<td>Σ PUFA</td>
</tr>
<tr>
<td>Σ MUFA</td>
</tr>
<tr>
<td>Σ SFA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Composition of SFA, MUFA and PUFA in selected plant oils [Pieszka 2007]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total fatty acids (%)</td>
</tr>
<tr>
<td>SFA</td>
</tr>
<tr>
<td>MUFA</td>
</tr>
<tr>
<td>PUFA</td>
</tr>
<tr>
<td>PUFA n-6</td>
</tr>
<tr>
<td>PUFA n-3</td>
</tr>
</tbody>
</table>
The effect of oil plants supplementation in pig diet

Novo by mammals [Ogłuszka et al. 2017]. They must be derived directly from either animal or plant products, as the human physiological requirement for long chain (LC) n-3 PUFA can be well met by the consumption of plant foods containing the ALA precursor [Jóźwik et al. 2010, Brzozowska and Oprządek 2016, Czech et al. 2017].

One of the methods of improving the dietetic value of pork meat, through modification of the fatty acid composition, is the supplementation of pig diets with oil plants for example linseeds, rapeseed or sunflower (Tab. 2).

However, the increased content of PUFA in pork may adversely affect its quality due to the susceptibility of n-3 PUFA to oxidation [Lyberg et al. 2005, Kerr et al. 2015]. The aim of the current review was to summarize and update the current knowledge about the impact of supplementation of pig diets with oil plants on the quality and nutritive value of pork meat.

Oil plants

There is scientific evidence about the positive effect of using oil plants in the pig diet on the nutritional value of raw pork meat and pork products. The FA composition of the carcass lipid depots in monogastric animals can be altered by dietary manipulation, so that diet fed can decrease saturated fatty acids (SAT) and increase PUFA in pork [Nuernberg et al. 2005, Realini et al. 2010, Ranucci et al. 2015]. For example, in Spain fat sources high in oleic acid are available from the olive oil industry, and have been effectively used by Iberian pig producers to modify the fatty acid profile of pork products [Gonzalez et al. 2005].

Linseed

Linseed enrichment of the pig diet is an important determinant of the extent of improvement in intramuscular fat deposition [Huang et al. 2008], due to alterations in the expression of genes involved in adipogenesis [Luo et al. 2009]. Data from the meta-analysis carried out by Corino et al. [2014] demonstrated that no differences have been reported for pH, drip loss, cooking loss as well colour in pork meat supplemented with linseed into the pig diet (except for Juarez et al. [2011]). The authors also confirmed that linseed supplementation of pig diets may improve the nutritional quality of pork by increasing the n-3 FA concentration in muscle and adipose tissue. According to Raes et al. [2004] dietary linseed allows ALA in muscle to compete more effectively with LA for the pathways responsible for producing LC PUFA. Moreover, the use of linseed in pig diets seems to be a good source of n-3 PUFA, also due to its economic and technical sustainability and ALA content (50% of fatty acids). In pigs approximately one-third of the supplied n-3 that was deposited, resulted from the conversion of ALA to EPA and DHA. [Kloareg et al. 2007]. In the human organism n-3 FA, especially ALA, EPA and DHA play a very important role [Strzałkowska et al. 2009, Poławska et al. 2013, Szostak et al. 2016, Wojtasik-Kalinowska et al. 2016]
since they possess anti-inflammatory, antimicrobial and antioxidant properties [Jóźwik
\textit{et al}. 2010]. Moreover, DHA can contribute to the development of infant brain and
liver [Horbańczuk and Wierzbicka 2016]. However, Bečkova and Vaclavkova [2010]
demonstrated that feeding the linseed diet increased the content of n-3 PUFA in
adipose tissue, but DHA was not altered by the diet.

\textbf{Selected types of oil plants}

In pigs fed with oil plants (linseed, rapeseed) as well as fish oil and lard the content
of the PUFA’s in the back fat and in the part of raw muscle differed depending on the
type of supplemented fat [Lisiak \textit{et al}. 2012]. The highest amounts of n-3 and the
best n-6/n-3 ratio were reported in the group supplemented with a higher share of
linseed (ca. 3:1) as compared to animals fed with a greater portion of rapeseed or fish
oils (about 5.5:1). Bertol \textit{et al}. [2013] aimed at evaluating the effect of genotype and
dietary oil sources: soybean, canola and canola + flax on pork quality, and fatty acid
composition. They observed that genotype affected the technological quality of pork
(color, intramuscular fat) and the fatty acid profile (n6/n-3 ratio). Králík \textit{et al}. [2010]
compared the effect of dietary supplementation with rapeseed, linseed and sunflower
oils on the fatty acid composition in pork meat. The highest content of n-3 PUFA and
the most favorable ratio of n-6/n-3 was reported for the group fed with linseed oil
(P<0.001). Similar results regarding the improved composition of FA (n-3) in pork
after linseed supplementation of the diet were obtained by Nuernberg \textit{et al}. [2005],
however the sensory characteristics of meat were also somewhat affected. The overall
flavor of the combined meat/ back fat sample seems to be negatively affected by linseed
oil supplementation. Increasing the n-3 content in pork can also be problematic due
to off-odours and flavors resulting from oxidation of the PUFA’s, what can affects the
muscle palatability [Juarez \textit{et al}. 2011]. The impact of dietary fat sources (soybean
oil, calcium soaps of palm oil, animal fat,) on meat quality, fatty acid composition and
sensory attributes in pork was analyzed by Alonso \textit{et al}. [2012]. According to the cited
authors, dietary fat supplementation did not significantly affect ultimate pH, colour,
sensory attributes or SFA. Pigs fed soya bean oil had the lowest proportion of MUFA
and the highest of PUFA. Moreover, dietary fat sources could be recommended for
inclusion in diets, at these levels, with no detrimental effect on consumption quality.
However the dilemma between a high sensory quality and consumer health still exists,
even at these low levels of inclusion of different fat sources [Alonso \textit{et al}. 2012].

The pig meat fatty acid composition was affected by feeding, since high-oleic
sunflower oil supplementation resulted in a higher oleic acid content of pork meat,
whereas no significant differences in FA composition were found when α-tocopheryl
acetate was added to the feed [Cardenia \textit{et al}. 2011]. In turn, Wojtasik \textit{et al}. [2012]
analyzed the effect on meat quality and fatty acid profile of intramuscular fat and
subcutaneous tissue fat of different fat mixtures in the diet: diet A: rapeseed oil, fish oil,
and lard; diet B: rapeseed and linseed oil and diet C linseed and fish oil. Fat mixtures in
the diet did not affect performance, but changed the PUFA concentration. The authors stated that supplementation of the diet for pigs with a mixture of linseed oil and fish oil makes it possible to obtain good quality pork with health-promoting properties, since meat and fat from pigs fed linseed and fish oil had PUFA/SFA and n-6/n-3 values in agreement with WHO recommendations. Studies on the effect of fat supplements such as palm oil, linseed oil, rapeseed oil, and sunflower oil on pork quality showed a significantly higher MUFA level in the m. longissimus dorsi of pigs receiving dietary palm oil when compared to the linseed oil-fed pigs (P<0.05) [Pieszka et al. 2007].

In pigs, the dietary treatments based on plant feedstuffs (linseed oil with or without a supplement like selenium, vitamin E and C and soybean oil), animal fat (tallow) and fish oil had no significant effects on meat quality, but the FA composition of the loin and the backfat resembled the FA profiles of the diets [Morel et al. 2013]. As expected, pigs fed diets without linseed oil or soybean had the lowest levels of linoleic acid and α-linolenic acids in the backfat [Morel et al. 2013]. In turn, Mas et al. [2011] observed in a study where York-crossed pigs were fed a high oleic acid (HO) diet between 30 and 120 kg of body weight, a modified FA composition of subcutaneous fat with minor changes in intramuscular FA composition. Feeding the HO diet did not alter meat quality traits, and major primal cuts from animals fed both diets were suitable as the base for dry cured products. Subcutaneous fat from pigs fed the HO diet had a higher MUFA level, while the levels of PUFAs decreased without adversely affecting carcass quality and producing suitable hams for processing by the meat industry. In an earlier study conducted by Mas et al. [2010] with the same diets but on pigs of a different genotype – high-lean (Landrace×Large White)× Pietrain), resulted in a significant increase of the C18:1 and MUFA levels in intramuscular fat from animals fed HO diet as compared to pigs from the control group.

The use of antioxidants in pig diet

As mentioned earlier, enrichment of pork meat with n-3 PUFAs may resulted in a deterioration of the quality of pork and increase of its susceptibility to oxidation. Supplementation of pig feed with linseed oil leads to an acceleration of the oxidation processes in meat samples obtained from fresh loin [Godziszewska et al. 2017]. Pork, in particular, oxidises more rapidly than either beef or lamb, because of its relatively high content of unsaturated fatty acids [Botsoglou et al. 2012]. Thus, the use of antioxidants, such as vitamins A, C, E and selenium, in the animal diets leads to a decrease in the susceptibility of pork to oxidation [Godziszewska et al. 2017, Polawska et al. 2016]. For example diet supplementation with vitamin E, that function either through free radical scavengers or by diminishing the formation of initiating lipid radicals, must be considered when formulating PUFA-enriched pig diets [Botsoglou and Botsoglou 2010]. Moreover, the use of dietary antioxidants in pig diets showed positive effects on colour, nutritive value [Faustman et al. 2010] and meat flavour of pork [Cardenia et al. 2011]. Furthermore, a meta-analysis showed a positive effect of
dietary vitamin E supplementation on pork colour [Trefan et al. 2010]. The oxidative and colour stability of pork depends mostly on the balance of anti-oxidant and oxidant substances [Serpent et al. 2012]. In a study on pigs fed linseed the authors reported that 200 mg/kg feed of dietary vitamin E is sufficient to protect muscles from lipid oxidation, increasing α-tocopherol tissue levels [Botsoglou et al. 2012, Sales and Koukolová 2011]. Antioxidant supplementation in pig feed has a positive impact on the characteristics of raw pork. Vitamin E and selenium supplementation in pig diets decreased the level of volatile aldehydes in the Longissimus dorsi muscle [Wojasik-Kalinowska et al. 2016]. However, the authors suggest that further studies should be conducted in order to investigate the mechanism of volatile compound formation, both in raw meat and meat after heat treatment, when the pig diet is supplemented with bioactive components. The effects of different concentrations of dietary oregano essential oil supplementation (from 0.25 to 1 ml/kg of fed diet) on finishing pig meat characteristics were investigated in a study conducted by Simitzis et al. [2009]. The mentioned authors concluded that meat quality attributes were unchanged, indicating that the dietary administration of different levels of oregano essential oil did not exert any effect on pig meat parameters. Moreover, the lipid oxidation levels suggested a lack of antioxidant effect for the oregano essential oil. In turn, the combination of oregano essential oil and sweet chestnut wood extract may be useful to increase the pig antioxidant status, since no marked effects were observed on pig performance and raw meat quality traits [Ranucci et al. 2015]. However, the mix was responsible for a higher palatability for consumers and for a darker and redder colour of the cooked meat. Interesting data was delivered by Choi et al. [2013] who demonstrated that the oxidative stability of sunflower seed oil, which delays the loss of nutritional value and the development of unpleasant flavors, depends on the proportion of oleic acid and the amounts of antioxidants, mainly α-tocopherol. This suggests that the advantage of sunflower seed oil lies in its higher oxidative stability than oils low in oleic acid, what is desirable for refining and storage [Cardenia et al. 2011]. In turn, olive oil provides meat products with high levels of oleic acid and monounsaturated fatty acids (MUFA), natural antioxidants such as tocopherols and reduces cholesterol levels without affecting considerably the sensory characteristics of the products [Rodriguez-Carpena et al. 2012].

According to Botsoglou et al. [2012], extracts from olive leaves can constitute a source of alternative natural antioxidants with the potential antioxidant activity, as they are rich in phenolic constituents which delay lipid oxidation by reducing the production of primary and secondary products like MDA. Moreover, this could improve odor and taste scores of the n-3 enriched pork products [Botsoglou et al. 2014].

Summary

On the basis of the reviewed literature, one may conclude that the positive effect of supplementing pig diets with oil plants like linseed, rapeseed or olives, has been
demonstrated, especially on the nutritional value of raw pork meat and pork products. Among oil plants the linseed in pig diet seems to be especially good source of n-3 PUFA, due to its economic and technical sustainability as well as ALA content (50% of fatty acids). However, enrichment of pork meat with n-3 PUFAs increased its susceptibility to oxidation and led to a deterioration of the quality of pork, especially in relation to the sensory characteristics of meat. The overall flavor of the combined meat/ backfat sample seems to be negatively affected by linseed oil supplementation. Thus, pig diets should also be supplemented with antioxidants such as vitamin E, C or Se, or natural ones like olive leaves extracts, rich also in phenolic constituents. Vitamins are a inhibitor of lipid oxidation acting through free radicals-scavenging mechanism. Furthermore, recent studies revealed also that supplementation of pig fodder with vitamins increases deposition of tocopherols and antioxidative elements in the pork meat.

REFERENCES

4. BLICHARSKI T., KSIĄŻEK P., POSPIECH E., MIGDAL W., JÓŹWIK A., POLAWSKA E., LISIAK D., 2015 – Aktualna wartość wieprzowiny, jej znaczenie w diecie i wpływ na zdrowie konsumentów (The value, importance in the diet and effect on human health of pork meat) Ed. Polski Związek Hodowców i Producentów Trzody Chlewnej „POLSUS” (Polish Pig Breeders and Producers Association “POLSUS”), Warszawa 1-152.

The effect of oil plants supplementation in pig diet

51. WOJTASIK-KALINOWSKA I., GUZEK D., GÓRSKA-HORCZYČZAK E., GLĄBSKA D., BRODOWSKA M., DA-WEN SUN, WIERZBICKA A., 2016 – Volatile compounds and fatty acids profile in Longissimus dorsi muscle from pigs fed with feed containing bioactive components. *LWT – Food Science and Technology* 67, 112-117.