Associations between polymorphism in the 2,4-Dienoyl-CoA Reductase 1 gene (DECR1) and growth traits of Shanxi White pig*

Bugao Li**, Xiaohong Guo, Guoqing Cao, Zhongxiao Zhou

College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China

(Received August 23, 2010; accepted March 8, 2011)

A polymorphism within exon 2 of the 2,4-dienoyl-CoA reductase gene (DECR1) was investigated by PCR-SSCP in 228 Shanxi White pigs. An association between the DECR1 polymorphism and growth traits in Shanxi White pigs was determined with an univariate animal model. The polymorphism was found within exon 2 of the DECR1, giving rise to genotypes AA, BB or AB. This polymorphism exhibited a significant effect of generation and sex (P<0.05, P<0.01) on growth traits and backfat thickness. At the age of six months BB pigs showed the body weight and chest girth higher than AA and AB animals. However, the polymorphism revealed no significant effects on other growth traits (P>0.05) though a trend of BB>AB>AA was showed.

KEY WORDS: DECR1 / gene polymorphism / growth traits / PCR-SSCP / pig

2,4-dienoyl-CoA reductase gene (DECR1) encodes for mitochondrial 2,4-dienoyl-CoA reductase 1 (DECR1), which serves as an auxiliary enzyme participating in the oxidation pathway of polyunsaturated fatty acids by catalyzing the reduction of trans-2-cis-4-dienoyl-CoA to 3-enoyl-CoA [Kunau et al. 1978, Helander et al. 1997, Aner et al. 1999]. In the pig DECR1 is located on chromosome 4 q1.2 (genomic interval 71 to 86 cM), which coincides with a QTL associated with phenotypic variation in

*Supported by the Shanxi Science and Technology Committee (grants No. 991016, 021043 and 20080311031) and Science and Technology Ministry of China (2008GB2A300032)

**Corresponding author: bugaoli@gmail.com
carcass and growth traits, and metabolism of fatty acid [Perez-Enciso et al. 2000, Clop et al. 2002, Clop et al. 2003]. Pig DECR1 is therefore thought to be one of the candidate genes for carcass and meat quality and growth traits [Kunau et al. 1978, Clop et al. 2002, Davoli et al. 2002, Amills et al. 2005]. Earlier studies have showed that the expression level of DECR1 and the activity of the enzyme are associated with the intermuscular fat, and especially linoleic acid content [Walling et al. 2000, Perez-Enciso et al. 2000]. It was also revealed that the growth rate of pigs is related to polymorphism within the 2,4-dienoyl-CoA reductase gene [Walling et al. 2000, Perez-Enciso et al. 2000].

Shanxi White pig is a specialized lean-meat dam strain newly established by a systematic breeding programme. The initial basic population was produced through complex crosses made among the Shanxi local breed of Mashen pig, Taihu pig (Er huali stain sub-strain) and imported Landrace boars. The objective of the present study was to identify polymorphism in the DECR1 coding sequence in Shanxi pig and investigate whether it is associated with its growth traits.

Material and methods

Animals and their phenotypic traits recorded

A total of 228 pigs from generation 4, 5 and 6 of a systematic breeding programme were used (63 males and 165 females). All the pigs were kept under the same feeding and environmental conditions. The following phenotypic traits of pigs were recorded: body weight at birth and at weaning (age 28 days), body weight, body height (at withers), body length, chest girth and backfat thickness at the last rib level (age 6 months).

Genomic DNA extraction

Genomic DNA was isolated from ear tissue by a standard phenol/chloroform extraction method. The isolated genomic DNA was diluted in TE buffer and stored at -20°C until use.

Polymerase Chain Reaction (PCR) primers and conditions

PCR primers were designed based upon the sequence information provided by Davoli et al. [2002a]. The primer sequences were as follows: forward 5’-CGTCTAAGTCC TTCCCACC -3’, reverse 5’-GCACCTAAGCTGGACAGAT -3’. The PCR mixture contained 2.5 µL 10×PCR buffer, 2 µL dNTP (2.5 mmol/L each), 1 µL forward and reverse primers (10 µmol/L each), 0.2 µL Taq DNA polymerase (5 U/µL), 1.0 µL genomic DNA (50 ng/µL), and 18.3 µL ddH₂O. Following were the PCR conditions: one denaturation step at 95°C for 5 min, followed by 31 cycles of 95°C for 30 s, 61°C for 30 s and 72°C for 30 s, and a final extension step at 72°C for 10 min. The PCR product was examined electrophoretically in a 2% agarose gel.
Polymerase Chain Reaction - Single Strand Confirmation Polymorphism (PCR-SSCP) analysis

5 µL PCR product was mixed with 5 µL loading buffer containing 98% Formamide, 0.025% Bromophenol Blue, 0.025% Xylene Cyanol FF, and 10 mmol/L EDTA. The mixture was denatured at 98°C for 10 min, then immediately put on ice and left for 5 min. The samples were electrophoresed in 14% polyacrylamide gel (PAGE) at 4°C overnight. The gel was then silver-stained, and the image was taken for SSCP analysis.

Statistical

The assumed model for the data of early phenotypic traits such as body weight at birth and weaning was as follows:

\[y = X\beta + Z_{a}\alpha + Z_{m}m + e \]

where:
- \(y \) – analysed trait vector;
- \(\beta \) – fixed effects (three generation effects, two sex effects, three \(DECR1 \) genotype effects);
- \(\alpha \) – vector of additive genetic effects;
- \(m \) – maternal effects;
- \(e \) – the residual vector and \(X, Za \) and \(Zm \) are the linkage matrices of \(\beta, \alpha \) and \(m \), respectively.

The assumed model for the data of phenotypic traits at the age of 6 months was as following:

\[y = X\beta + Z\alpha + bt + e \]

where:
- \(y \) – analysed trait;
- \(\beta \) – fixed effects (three generation effects, two sex effects, three \(DECR1 \) genotype effects);
- \(\alpha \) – vector of additive genetic effects;
- \(t \) – age (day) on the day of measurement of body weight;
- \(b \) – regression index of the age (day) on the day of measurement against body weight;
- \(e \) – the residual vector, and \(X \) and \(Z \) are the linkage matrices of \(\beta \) and \(\alpha \), respectively.

Statistical analysis was performed using WOMBAT software, an univariate analysis programme [Meyer 2007]. SAS (v6.12) was used to estimate (co)variance components. Subsequently the average information restricted maximum likelihood (AIREML) was used for iterative computation with a convergence threshold of 10^{-9}. The significance of difference of least squares solutions was calculated using a T test.
Results and discussion

A 127 bp gene specific fragment amplified from exon 2 of *DECR1* was obtained by PCR-SSCP analysis and yielded three distinct genotypes: AA, BB and AB (Fig. 1). Allele frequencies were 0.5724 and 0.4276 for A and B, respectively.

![Fig. 1. The representative PCR-SSCP result of the exon 2 of *DECR1*. PCR products were electrophoresed in 14% PAGE gel at 4°C overnight, then silver stained.](image)

Table 1. The effects of polymorphism of *DECR1* gene on body weight and chest girth of Shanxi White pigs at month 6 of age

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Body weight (kg)</th>
<th>Chest girth (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>mean</td>
</tr>
<tr>
<td>AA</td>
<td>62</td>
<td>83.589</td>
</tr>
<tr>
<td>AB</td>
<td>126</td>
<td>84.127</td>
</tr>
<tr>
<td>BB</td>
<td>29</td>
<td>88.155</td>
</tr>
</tbody>
</table>

*GLS±SE: general least square solutions ± standard errors.

Table 1. The effects of polymorphism of *DECR1* gene on body weight and chest girth of Shanxi White pigs at month 6 of age

Statistical analysis revealed that this polymorphism had significant generation effects on body weight and chest girth at month 6 of age (Tab. 1). Animals of genotype BB showed the highest phenotypic parameters of each trait in most of the cases, but highly significant differences (P<0.01) between pigs of genotype BB and AB or BB and AA were only observed in body weight and chest girth at the age of 6 months.

All traits related to growth are quantitative polygenetic traits, affected by multiple genetic and environmental factors [Bidanel *et al.* 2002, Kaminski *et al.* 2009]. The basis for the genetic component of quantitative traits is often due to the cumulative effects on the phenotype of many genetic loci. Quantitative trait loci (QTL) mapping in the pig has identified a number of genomic regions overlapping or close to *DECR1* locus on chromosome 4, which affect growth traits [Magnus *et al.* 2005].
However, causative gene identification and validation is still a daunting task. The 2,4-dienoyl-CoA reductase 1, as a step limiting enzyme in the β-oxidation pathway of polyunsaturated fatty acids, plays a key role in fat and protein metabolism. Therefore, DECR1 has been extensively studied as a candidate gene for the control of growth and carcass and meat quality traits in pigs. Studies on the association between the DECR1 polymorphism and carcass, meat quality and growth traits [Stefanon et al. 2004, Kaminski et al. 2009] have produced positive results. The results published here are largely in accordance with the report of Kaminski et al. [2009], in which DECR1 genotype and growth rate were found to be significantly associated in Polish Landrace boars.

Amills et al. [2005] performed an association analysis between two missense SNPs within exon 2 and exon 5 of DECR1, and growth, carcass, and meat quality traits in a highly selected Landrace population. Differences in meat quality traits such as isocitrate dehydrogenase activity, longissimus thoracis pH, lightness and redness were found among the genotypes. The association between DECR1 genotype and other growth traits were not found to be statistically significant [Amills et al. 2005]. These findings contrast with our results and others to some extent. The inconsistency between the results could be explained by a difference in population origin and size.

It remains unclear whether the association between polymorphisms of the DECR1 gene and growth and meat quality traits are due to changes in enzyme activity and efficiency of beta-oxidation of fatty acids caused by a mutation in the coding sequence of the gene, or that perhaps polymorphisms in DECR1 are in linkage disequilibrium with the true causal mutation. However, this does not delay the use of DECR1 genotypes as a selection markers in future Shanxi white pig breeding programme.

In summary, our results, together with other studies, indicate a significant association of a DECR1 polymorphism with meat quality and growth traits in pigs. This implies that the DECR1 polymorphism could be one of the most effective genetic markers applied in marker-assisted selection in Shanxi white pigs.

Acknowledgement. The authors thank Dr. M. O’Shea and Dr. X. Liu of Edinburgh University, UK, for their help in preparation of the manuscript.

REFERENCES

9. KAMINSKI S., BRYM P., WOJCIK E., 2009 – A note on associations between polymorphism within the 2, 4-dienoyl-CoA reductase gene (DECR1) and growth rate of Polish Landrace boars. Journal of Animal And Feed Sciences 18, 71-77.

